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1. Introduction
 Meaning:

 Concepts, topics, fact descriptions, semantic relations, ways 
of organizing information

 Mining
 Gathering meaning into machine-readable structures (e.g., 

ontologies)
 Using meaning in areas like IR and NLP

 Wikipedia:
 The largest and most widely-used encyclopedia in existence
 Partially validated, trusted, multilingual, multimedia text data
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Traditional approaches to Mining 
Meaning
 Carefully hand-crafted rules

 High quality, but restricted in size and 
coverage

 Needs input of experts, however very 
expensive to keep with developments

 e.g., Cyc ontology
 Hundreds of conbtributors and 20 years of 

development
 Still limited size and patchy coverage
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Traditional approaches to Mining 
Meaning
 Statistical inference

 Scarifice quality and go for quantity by 
performing large-scale analysis of unstructured 
text

 Might be applicable for specific domain and 
text data/corpora

 Problems in generalization or moving into new 
domains and tasks
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2. Wikipedia: a middle ground
 Combines quality and quantity through mix of scale and structure

 2 millions of articles and 1000 of contributors
 18 GB of text
 extensive network of links, categories, infoboxes provide explicitly 

defined (shallow) semantics
 Note: 

 Restricted trust & credibility compared to traditional rule-based 
approaches, because contributors are largely unknown and un-
experts

 Only represents a small snapshot of human language use in the web!
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Wikipedia: A resource for mining 
meaning
 Wikipedia offers a unique, entirely open, collaborative editing 

process
 Approx. 250 languages are covered
 „Emerging semantics“ through collaborative „use of language“ 

(cf. Wittgenstein)
 Self-organizing system, but controlled

 To avoid „edit wars“, sophisticated Wikipedia policies (must 
be followed) and guidelines (should be followed) are 
established
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Wikipedia: A resource for mining 
meaning
 Implications for mining

 Constantly growing and changing data
 How to evaluate systems that use Wikipedia ? How to determine 

„ground truth“?
 Most researchers use Wikipedia as a „product“

 Data basis for extracting information/meaning
 In principle also possible: consider Wikipedia as  a „process“

 Infrastructure allows „reasoning“ about „how something has been 
written“, e.g., mining of versions/authors, discussions etc.

 Cross-lingual analysis for cultural/socio data mining ?
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Wikipedia's structure

 Articles
 Redirects
 Disambiguation pages
 Hyperlinks
 Category structure
 Templates/Infoboxes
 Discussion pages
 Edit histories
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Wikipedia article
 Article = Concept
 Title resembles term in 

thesaurus (capitalization might 
be important)

 Articles begin with a brief 
overview of the topic

 First sentence defines the 
entity and its type

 Scale:
 ~10M articles in 250 

languages
 e.g., 2M English, 0.8M 

German

Optic nerve (the nerve)
vs. 

Optic Nerve (the comic book)
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Wikipedia redirects
 A page with just text in form 

of a directive
 Goal:

 Have a single article for 
equivalent terms

 ~3M in English Wikipedia
 Usable for resolving 

synonyms, since an external 
thesaurus is not necessary
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Wikipedia disambiguation page
 A page with possible 

meanings (i.e., articles) of a 
term

 Snippets as brief 
descriptions of a term 
(article)

 English Wiki as 0.1M disamig. 
Pages

 Usable for processing 
homonyms
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Wikipedia hyperlinks
 Hyperlink are links from 

articles to other articles
 ~60M links in English 

Wikipedia
 Usable for

 Lexical semantics
 Associative relationship
 Density/Ranking
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Wikipedia categories
 Merely nodes for organizing articles 

with minimum of explanatory text
 Goal:

 Represent information hierarchy 
 Overall structure is a DAG

 Status
 Still in development, no clean 

definition,
 Most links are ISA, others 

represent more different types, 
e.g., meta categories for 
editorial purposes
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Wikipedia templates
 Templates often look like text 

boxes with a different 
background color from that of 
normal text. 

 They are in the template 
namespace, i.e. they are defined 
in pages with "Template:" in 
front of the name.

 They are like text patterns to 
add information



  16

Wikipedia infoboxes
 An infobox is a special type 

of template that displays 
factual information in a 
structured uniform way.

 ~8000 different infobox 
templates

 Still not standardized, e.g., 
names/values of attributes.

 Ako semi-structured IE 
templates
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Wikipedia discussion & edit 
histories 
 Each article has an 

associated talk page 
representing a forum for 
discussion as to how it might 
be critized, improved or 
extended

 Contains edit development & 
corresponding author (alias)

 Both Wikipedia structures 
are not much used in data 
mining so far.
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Perspectives on Wikipedia
 Wikipedia as an encyclopedia
 Wikipedia as a large corpus

 Large text sources, well-written, well-
formulated

 Partially annotated through tags
 Partial multilingual alignment

 Wikipedia as a thesaurus
 Compare and augment with traditional thesauri
 extract/compute crosslingual thesauri
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Perspectives on Wikipedia
 Wikipedia as a database

 Massive amount of highly structured information
 Several projects try to make it available, e.g. DBPedia

 Wikipedia as an ontology
 Articles can be considered as conceptual elements
 explicit/implicit lexical semantics relationships

 Wikipedia as a network structure
 The hyperlinked structures make Wikipedia a microcosmos of the 

Web
 Development of new ranking algorithm, e.g., to find related articles 

or cluster articles under different criteria
 Apply WordNet similarity measures to Wikipedia's category graph
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3. Solving NLP tasks

 Two major groups
 symbolic methods, where system utilizes a 

manually encoded repository of human language
 Low coverage, e.g., WordNet

 Statistical methods, which infer properties of 
language by processing large text corpora
 Upper performance bounds probably only can improve 

when symbolic knowledge is integrated (hybrid 
approaches)
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Four NLP problems in which 
Wikipedia has been used
 Semantic relatedness
 Word sense disambiguation
 Co-reference resolution
 Multilingual alignment
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Four NLP problems in which 
Wikipedia has been used
 Semantic relatedness
 Word sense disambiguation
 Co-reference resolution
 Multilingual alignment
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Semantic Relatedness
 Semantic relatedness determines how much two 

concepts (e.g., doctor & hospital) are related by using 
all relations between them, e.g.,  is-a, has-part, is-
made-of, …
 Only if is-a then we call it semantic similarity

 Usually, relatedness is computed using 
 predefined taxonomies (e.g., is-a) and other 

relations, e.g., has-part, is-made-of
 Statistical methods to analyze term co-occurrence 

in large corpora
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Evaluation
 Standard corpora

 M&C: a list of 30 noun pairs, cf. Miller & Charles, 1991
 R&G: 65 synonymous word pairs, cf. Rubenstein & Goodenough, 1965
 WS-353: a list of 353 word pairs, cf. Finkelstein et al. 2002

 http://alfonseca.org/eng/research/wordsim353.html
 Best pre-Wikipedia result

 0.86 correlation for M&C by Jiang & Conrath, 1997
 based on human similarity judgment
 A mixed statistical approach + WordNet

 0.56 for WS-353 by Finkelstein using LSA
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Wikipedia based Semantic 
Relatedness
 Strube & Ponzetto, AAAI-2006

 WikiRelate!
 Gabrilovic & Markovitch, IJCAI-2007

 Explicit Semantic Analysis (ESA)
 Milne, 2007

 Use of internal linkstructure of Wikipedia 
articles
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Approach 1: WikiRelate!
 Re-calculation of different measures developed for WordNet using 

Wikipedia's category structure
 Best performing measure: normalized path measure, cf. Leacock & 

Chodorow, 1998:
 lch(c

1
,c

2
) = -log(length(c

1
,c

2
)/2D))

 length(c
1
,c

2
): shortest path, D: max. depth of taxonomy

 Result: 
 WordNet-based measures still better on M&C and R&G
 Wikipedia-based measures are better on WS-353 (0.62)

 Why ? WordNet is too fine-grained and sometimes do not match 
the user's intuition (cf. Jaguar vs Stock)
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Approach 2: Explicit Semantic 
Analysis
 Idea: use centroid-based classifier to map input text to 

a vector of weighted Wikipedia articles
 Bank of Amazon → vector(Amazon River, Amazon Basin, Amazon 

Rainforest, Amazon.com, Rainforest, Atlantic Ocean, Brazil, ...)

 Relatedness(c
1
, c

2
) 

 cosinus(a
1
, a

2
), where a

i
 is article of concept c

i

 Result:
 WS-353: ESA=0.75, LSA=0.56
 Open-Directory-Project = 0.65 → Wikipedia'quality is greater



ESA: More details
 T = {w1…wn} be input text
 <vi> be T’s TFIDF vector

 vi is the weight of word wi
 Wikipedia concept cj , {cj ∈ c1, . . . , cN}

 N = total number of Wikipedia concepts
 Let <kj>  be an inverted index entry for word 

wi
 where kj quantifies the strength of association of 

word wi with Wikipedia concept cj



Explicit Semantic Analysis

 the semantic interpretation vector V for text 
T is a vector of length N, in which the weight 
of each concept cj is defined as

 To compute semantic relatedness of a pair of 
text fragments we compare their vectors 
using the cosine metric





Example: small text input

 First ten concepts in sample interpretation vectors



Example: large text input

First ten concepts in sample interpretation vectors



Example (texts with ambiguous 
words)

First ten concepts in sample interpretation vectors



Empirical Evaluation

 Wikipedia
 parsing the Wikipedia XML dump, we obtained 2.9 

Gb of text in 1,187,839 articles
 removing small and overly specific concepts (those 

having fewer than 100 words and fewer than 5 
incoming or outgoing links), 241393 articles were 
left

 389,202 distinct terms



Empirical Evaluation

 Open Directory Project
 hierarchy of over 400,000 concepts and 

2,800,000 URLs.
 crawling all of its URLs, and taking the first 10 

pages encountered at each site
 70 Gb textual data. After removing stop words 

and rare words, we obtained 20,700,000 distinct 
terms



Datasets and Evaluation Procedure
 The WordSimilarity-353 (WS-353) 

collection
 contains 353 word pairs. Each pair has 13–16 

human judgements
 Spearman rank-order correlation coefficient 

was used to compare computed relatedness 
scores with human judgements

 Spearman rank-order correlation 
(http://webclass.ncu.edu.tw/~tang0/Chap8/sas
8.htm)



Datasets and Evaluation Procedure

 50 documents from the Australian Broadcasting Corporation’s 
(ABC) news mail service [Lee et al., 2005]
 These documents were paired in all possible ways, and each of 

the 1,225 pairs has 8–12 human judgements 
 When human judgements have been averaged for each pair, 

the collection of 1,225 relatedness scores have only 67 
distinct values. 

 Spearman correlation is not appropriate in this case, and 
therefore we used Pearson’s linear correlation coefficient

 http://en.wikipedia.org/wiki/Pearson_product-
moment_correlation_coefficient



Results for ESA

 word relatedness (WS-353)

 text relatedness 
(ABC)



Approach 3: Wikipedia hyperlinks
 Milne, 2007, only uses articles' internal links structure
 Relatedness of two terms:

 Determine articles
 Create vector from the links inside the articles that point to other articles
 Each link is weighted by the inverse number of times it is linked from other 

Wikipedia articles
 The less common the link, the higher its weight.

 Example:
 Bank of America is the largest commercial <bank> in the <United States> by 

both <deposits> and <market capitalization>
 4 links
 <market capitalization> gets higher weight than <United States>, and hence 

has semantic relatedness with <Bank of America>



Results for Wikipedia link 
structure
 Results on WS-353:

 Manual disambiguation: 0.72
 Automatic disambiguation (max. similarity): 0.45

 Milne & Witten (2008) improved disambiguation:
 Conditional probability of the sense given the term

 „Leopard“ most often links to animal article than to Mac OS article
 Normalized Google distance of term, cf. Cilibrasi & Vitanys's 2002 

instead of cosinus-measure
 Degree of collocation of two terms in Wikipedia

 Summing over these 3 parameters, they obtain 0.69 on WS-353
 But approach is less complex than approach of Gabrilovich & Markovitch



Summary of Results
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Four NLP problems in which 
Wikipedia has been used
 Semantic relateness
 Word sense disambiguation
 Co-reference resolution
 Multilingual alignment



  43

Word Sense Disambiguation
 Goal: resolving polysemy

 A polyseme is a word or phrase with multiple, related 
meanings. 

 A word is judged to be polysemous if it has two senses of the 
word whose meanings are related.

 Standard technology
 Dictionary or thesaurus that defines the inventory of 

possible senses
 Wikipedia as an alternative resource

 Each article describes a concept, i.e., a possible sense for 
words and phrases that denote it
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Example: Wood
 A piece of a tree or a geographical area with 

many trees
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Main Idea behind Word Sense 
Disambiguation
 Identify the context and analyze which of 

the possible senses fit it best.
 The following cases will be considered

 Disambiguating phrases in running text
 Disambiguating named entities
 Disambiguating thesaurus & ontology terms



  46

Disambiguating phrases in running 
text
 Goal: discover the intended senses of words and phrases
 WordNet: a popular resource, but

 Linguistic (disambiguation) techniques must be essentially 
perfect to help

 WordNet defines word senses very fine-grained making it 
difficult to differentiate them

 Wikipedia:
 Defines only those senses on which its contributors reach 

consensus
 Include an extensive description of each rather than 

WordNet's brief gloss.
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Wikification, Mihalcea & Csomai, 
2007
 Use Wikipedia's content as a sense 

inventory in its own.
 Ako Wikipedia-based Text Understanding

 Find significant topics in a text and link 
them to Wikipedia articles.

 Simulates, how Wikipedia authors manually 
insert hyperlinks.



Wikification: Find significant topics and link them to 
Wiki documents.

48
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Step 1: Extraction

 Identify important terms to be highlighted as links in a 
text

 Consider only terms appearing > 5 times in Wikipedia
 Imporant terms: 

 measure relationship of a term occuring as anchor text 
in articles & total number of articles it appears in

 Use a predefined threshold for those terms which should 
be highlighted as links
 F-measure of 55% obtained on a set of manually 

annotated Wikipedia articles
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Step 2: Disambiguation

 The highlighted terms are disambiguated 
to Wikipedia articles that capture the 
indented sense.
 Jenga is a popular beer in the bars of Thailand.
 bar → bar (establishment) article

 Given a term, those articles are candidates 
which contain the term has anchor text.
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Machine Learning approach for 
step 2.
 Supervised: already annotated Wikipedia 

articles serve as training data
 Features: 

 POS, -3/+3-window+ POS
 Computed for each ambiguous term that appeas 

as anchor text of a hyperlink
 Learner: Naive Bayes classifier
 Result: F = 87,7% on 6500 examples
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Learning to link in Wikipedia

 Milne & Witten, 2008
 Two important concepts

 Commonness
 relatedness



Learning to disambiguate links - 
commonness
 balancing the commonness of a sense with its relatedness to the 

surrounding context

 commonness (prior probability): the number of times a wiki document is 
used as a destination in Wikipedia

53



Learning to disambiguate links - 
relatedness

54

 Comparing each possible sense with its surrounding context

 Words consisting context also may be ambiguous

 Use un ambiguous words that has only one sense

 ex) algorithm, uniformed search, LIFO stack

 Reduced to selecting the sense article that has most in common with all 
of the context articles

 a,b: articles of interest

 A, B: sets of all articles that link to a and b

 W: a set containing all articles in Wikipedia

 some context terms are better than others

relatedness a , b=
log max ∣A∣,∣B∣−log ∣A∩B∣
log ∣W ∣−log min ∣A∣,∣B∣



Training – Configuration – Test

55

Training Set
(500)

Configuration
Set
(500)

Test Set
(100)

Training Configuration Test

find an optimal classifier and variables

Training Evaluation

 precision
 recall
 f-measure



Learning to disambiguate links 
– configuration and attribute selection

 identifying the most suitable classification 
algorithm

 setting minimum probability of senses that are 
considered by the algorithm
 reduce the required time to 

compare relatedness between 
context and candidate senses

56



Learning to disambiguate links - 
evaluation

57



Learning to detection links
 Naïve approach (Mihalcea and Csomai 2008)

 If probability that a word or phrase had been linked to an article 
exceeds a certain threshold, a link is attached to it

 Presented approach

 Machine learning link detector that uses various features
 Link probability
 Relatedness
 Disambiguation confidence
 Generality: the minimum depth at which it is located in Wikipedia’s 

category tree
 Location and Spread

 first occurrence, last occurrence, spread (distance between them)

58



Learning to detection links (cont’d)
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Learning to detection links 
- training and configuration, and evaluation

60
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